Quantitative Finance

A Simulation-Based Introduction Using Excel

Matt Davison

University of Western Ontario London, Canada

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A CHAPMAN & HALL BOOK

Contents

Preface, xvii

Снарте	r 1 🛛 🖊	ntroduction	1
Снарте	r 2 • I	ntuition about Uncertainty and Risk	5
2.1	CHA	PTER SUMMARY	5
2.2	INTR	ODUCTION	5
2.3	INDI	vidual attitudes toward RISK	6
2.4	THE S	st. Petersburg paradox	11
	2.4.1	Resolving the Paradox with Utilities	12
	2.4.2	Resolving the Petersburg Paradox with	
		Risk Exposure	13
	2.4.3	Other Ways to Resolve the Paradox	13
2.5	looi	KING FORWARD TO CHAPTER 3	13
EXE	RCISES		14
fur	ther F	READING	15
Снарте	× 3 • 1	The Classical Approach to Decision Making	
0	i l	under Uncertainty	17
3.1	CHAF	PTER SUMMARY	17
3.2	MAP	TO THE FUTURE	21
EXE	RCISE		21
FUR	THER F	Reading	21

v

Снарт	er 4 • '	Valuing Investment Opportunities: The Discounted Cash Flow Method	23
4.1	CHA	PTER SUMMARY	23
4.2	DISC EVAL	OUNTED CASH FLOW METHOD FOR UATING INVESTMENT OPPORTUNITIES	24
	4.2.1	Example of a Discounted Cash Flow	
		Technique	24
	4.2.2	Choosing the Discount Rate P	24
	4.2.3	Philosophical Problems with DCF	25
	4.2.4	Why This Is a Good Approach Despite Its Uncertain Philosophical Status	26
4.3	CON	CLUSIONS	26
EXE	RCISES		26
FUF	RTHER F	Reading	27
Снарте	er 5 • F	Repaying Loans over Time	29
5.1	CHAF	PTER SUMMARY	29
5.2	INTRO	ODUCTION	30
5.3	REPAY	YING A LOAN OVER TIME: EXCEL	31
5.4	REPAY	ying a loan over time:	
	MATH	TEMATICS	33
5.5	FIRST	-ORDER DIFFERENCE EQUATIONS	34
5.6	SOLV	ING THE LOAN REPAYMENT DIFFERENCE	
	EQUA	TION	35
	5.6.1	Loan Repaid "Quickly"	37
	5.6.2	Loan Repaid Continuously	38
5.7	Mori Equa	E EXAMPLES OF USING DIFFERENCE TIONS TO FIND LOAN PAYMENTS	41
5.8	WRITI FORM	NG THE DIFFERENCE EQUATION IN	45
59	BRIDO		45
EXER			46
FUR	THED D		46
I UK	11 ILN N		46

Снарте	R 6 Bond Pricing with Default: Using Simulations	49
6.1	CHAPTER SUMMARY	49
6.2	modeling a defaultable bond or loan	49
6.3	FINANCIAL INSIGHTS	55
6.4	SIMULATING LOAN PORTFOLIOS	56
6.5	WHAT HAPPENS IF THERE ARE A LARGE	
	NUMBER OF INDEPENDENT LOANS?	60
6.6	BRIDGE TO THE FUTURE	66
EXE	RCISES	66
FUR	THER READING	67
Снарте	R 7 Bond Pricing with Default: Using Difference	
	Equations	69
7.1	CHAPTER SUMMARY	69
7.2	RISKY BONDS	69
7.3	USING DIFFERENCE EQUATIONS TO FIND C	71
7.4	EXPLORING THE INSIGHTS ARISING FROM	
	EQUATION 7.5	74
7.5	DETERMINING RECOVERY RATES	75
7.6	DETERMINING THE PROBABILITY OF DEFAULT	76
7.7	A BRIDGE TO THE FUTURE	76
EXEF	RCISES	76
FUR	THER READING	76
Снартен	8	79
8.1	CHAPTER SUMMARY	79
8.2	INTRODUCTION	79
EXER	RCISES	87
FUR	THER READING	88
Снартеб	9 • Tranching and Collateralized Debt Obligations	89
9.1	CHAPTER SUMMARY	89
9.2	COLLATERALIZED DEBT OBLIGATIONS	90

9.3	TRANCHED PORTFOLIOS	91
9.4	THE DETAILED CALCULATION	93
	9.4.1 Pricing a Bond with Two Default Events	93
	9.4.2 Finding the "Fair" Coupon for Tranche B	94
9.5	CORRELATION OF TWO IDENTICAL BONDS	96
9.6	CONCLUSION	102
EXER	RCISES	102
FUR	THER READING	103
Chapter	10 • Bond CDOs: More than Two Bonds,	
	Correlation, and Simulation	105
10.1	CHAPTER SUMMARY	105
10.2	INTRODUCTION	105
10.3	USING AN EXCEL SIMULATION TO ANALYZE	
	CDOs WITH MORE THAN TWO BONDS	106
10.4	COLLATERALIZED DEBT OBLIGATIONS: AN	100
10 E		108
10.5		111
	CORRELATED DEFAULTS	114
EXER		118
FUR	HER READING	119
Снартер	11 - Fundamentals of Fixed Income Markets	101
11 1		121
11.1		121
11,4	11.2.1 Debt Markets versus Borrowing from Small	121
	Number of Large Entities	122
	11.2.2 Different Types of Bonds	122
11.3	GETTING DOWN TO OUANTITATIVE DETAILS	122
15	11.3.1 Interest Rate Conventions	124
	11.3.2 Discount Factor Conventions	124
11 4	SIMPLEST BOND PRICING FOLIATION	120
		120

11.5 HOW BONDS ARE TRADED IN CANADA	128
11.5.1 Bond Auctions	128
11.5.2 After Auction Trading of Bonds	129
11.6 CLEAN AND DIRTY BOND PRICES	129
11.6.1 Day Count Convention (or, the Dirty Secret	
of Clean Prices)	132
11.6.2 Dirty Price, Clean Price, and Invoice Price	133
11.7 CONCLUSION AND BRIDGE TO THE	
NEXT CHAPTER	133
EXERCISES	134
FURTHER READING	134
CHAPTER 12 • Yield Curves and Bond Risk Measures	137
12.1 CHAPTER SUMMARY	137
12.2 INTRODUCTION	137
12.2.1 Computing Yield to Maturity from Bond Prices	139
12.2.2 Other Yield Measures	139
12.3 CONSTRUCTING YIELD CURVES FROM	
Bond Prices	139
12.3.1 Linear Interpolation	141
12.4 BOND PRICE SENSITIVITIES TO THE YIELD	142
12.4.1 Example Duration Calculation for a Zero	
Coupon Bond	144
12.4.2 Curvatures or "Convexities"	145
EXERCISES	146
FURTHER READING	148
CHAPTER 13 • Forward Rates	149
13.1 CHAPTER SUMMARY	149
13.2 INTRODUCTION	149
13.3 RELATIONSHIPS BETWEEN FORWARD RATES	
and the yield curve	150

x Contents

13.4 YIELD CURVES, DISCOUNT FACTORS, AND	450
FORWARD RATES	153
13.5 INTERPRETING FORWARD CURVES	154
EXERCISES	155
FURTHER READING	155
CHAPTER 14 Modeling Stock Prices	157
14.1 CHAPTER SUMMARY	157
14.2 What are stocks?	157
14.3 SIMPLE STATISTICAL ANALYSIS OF REAL	
STOCK DATA	157
EXERCISES	161
FURTHER READING	162
CHAPTER 15 • Mean Variance Portfolio Optimization	163
15.1 CHAPTER SUMMARY	163
15.2 SELECTING PORTFOLIOS	163
15.2.1 Basic Model Assumptions	164
15.2.2 Turning Our Model Setting into an	
Optimization Problem	166
15.2.3 Studying the Formula in a Spreadsheet	172
15.2.4 Data Requirements	174
15.3 CAPM AND MARKOWITZ	174
EXERCISES	177
FURTHER READING	180
CHAPTER 16 • A Qualitative Introduction to Options	181
16.1 CHAPTER SUMMARY	181
16.2 STOCK OPTION DEFINITIONS	181
16.3 USES FOR PUT AND CALL OPTIONS	182
16.4 QUALITATIVE BEHAVIOR OF PUTS AND CALLS	184
EXERCISES	185
FURTHER READING	185

CHAPTER 17 • Value at Risk	187
17.1 CHAPTER SUMMARY	187
17.2 INTRODUCTION TO VALUE AT RISK	187
17.3 PITFALLS OF VaR	191
17.4 SUMMARY	191
EXERCISES	191
FURTHER READING	192
CHAPTER 18 • Pricing Options Using Binomial Trees	193
18.1 CHAPTER SUMMARY	193
18.2 INTRODUCTION	194
18.3 BINOMIAL MODEL	195
18.4 SINGLE-PERIOD BINOMIAL TREE MODEL FOR OPTION PRICING	199
18.5 EXTENDING THE BINOMIAL MODEL TO MULTIPLE TIME STEPS	201
18.5.1 Numerical Example: Pricing a Two-Period Binomial Put Option	202
18.6 MULTIPLE-STEP BINOMIAL TREES	210
18.7 SUMMARY	215
EXERCISES	216
FURTHER READING	217
CHAPTER 19 • Random Walks	219
19.1 CHAPTER SUMMARY	219
19.2 INTRODUCTION	219
19.3 DERIVING THE DIFFUSION PARTIAL	222
FXFRCISES	222
FURTHER READING	224
CHAPTER 20 Basic Stochastic Calculus	227
20.1 CHAPTER SUMMARY	227
20.2 BASICS OF STOCHASTIC CALCULUS	227

.....

20.3	STOC	HASTIC INTEGRATION BY EXAMPLES	229
	20.3.1	Review of the Left Endpoint Rule of	
		Introductory Calculus	229
	20.3.2	Itô Integration	231
	20.3.3	Itô Isometry	235
	20.3.4	Introduction to Ordinary Differential Equations	237
	20.3.5	Solution of SDEs	241
		20.3.5.1 Arithmetic Brownian Motion	241
		20.3.5.2 Geometric Brownian Motion	242
		20.3.5.3 Ornstein–Uhlenbeck Process	243
20.4	CONC	CLUSIONS AND BRIDGE TO NEXT CHAPTERS	249
EXER	CISES		249
FURT	THER R	EADING	252
CHAPTER	21 •	Simulating Geometric Brownian Motion	253
21.1		ATING GBM STOCK PRICES AT	252
21.2			233
21,2	STOC	K PRICES	257
21.3	SUMN	1ARY	258
EXERCISES		258	
Furt	HER R	EADING	259
Chapter	22 •	Black Scholes PDE for Pricing Options	
		in Continuous Time	261
22.1	CHAP	TER SUMMARY	261
22.2	INTRC	DUCTION	261
22.3	HEDG	ING ARGUMENT	262
22.4	CALL I	PRICE SOLUTION OF THE BLACK	
	SCHO	Les equation	264
22.5	WHY :	short selling is so dangerous	264
22.6	SUMN	IARY AND BRIDGE TO THE FUTURE	265
EXER	CISES		265
Furt	HER R	EADING	266

CHAPTER 23 • Solving the Black Scholes PDE	267
23.1 CHAPTER SUMMARY	267
23.2 Solving the black scholes partial pde For a European Call	267
23.3 GENERAL EUROPEAN OPTION PAYOFFS: RISK- NEUTRAL PRICING	281
23.4 SUMMARY	284
EXERCISES	285
CHAPTER 24 • Pricing Put Options Using Put Call Parity	287
24.1 CHAPTER SUMMARY	287
24.2 SUMMARY	290
EXERCISES	290
FURTHER READING	290
CHAPTER 25 Some Approximate Values of the Black Scholes Call Formula	291
	291
25.7 APPROXIMATE CALL FORMULAS AT THE MONEY	201
25.3 APPROXIMATE CALL VALUES NEAR-THE-MONEY	292
25.4 APPROXIMATE CALL VALUES FAR-FROM-	2.55
THE-MONEY	296
FXFRCISES	304
FURTHER READING	304
CHAPTER 26 • Simulating Delta Hedging	305
26.1 CHAPTER SUMMARY	305
26.2 INTRODUCTION	305
26.3 How does delta hedging really work?	308
26.4 UNDERSTANDING THE RESULTS OF THE DELTA	312
26.5 THE MAPACT OF TRANSACTION COSTS	215
	515
OR, "BIG GAMMA" = "BIG MONEY"	317

26.7 BRIDGE TO THE FUTURE	318
EXERCISES	319
FURTHER READING	319
CHAPTER 27 Black Scholes with Dividends	321
27.1 CHAPTER SUMMARY	321
27.2 MODELING DIVIDENDS	321
27.2.1 "Tailed Stock Positions"	322
27.3 THE BLACK SCHOLES PDE FOR THE CONTINUOUSLY PAID DIVIDEND CASE	324
27.4 PRICING THE PREPAID FORWARD ON A Continuous dividend paying stock	326
27.5 MORE COMPLICATED DERIVATIVES ON UNDERLYINGS PAYING CONTINUOUS	
DIVIDENDS	327
EXERCISES	329
FURTHER READING	329
CHAPTER 28 • American Options	331
28.1 CHAPTER SUMMARY	331
28.2 INTRODUCTION AND BINOMIAL PRICING	331
28.3 AMERICAN PUTS	337
28.4 AMERICAN CALLS	340
EXERCISES	342
FURTHER READING	343
CHAPTER 29 • Pricing the Perpetual American Put and Call	345
29.1 CHAPTER SUMMARY	345
29.2 PERPETUAL OPTIONS: UNDERLYING PAYS NO DIVIDENDS	345
29.2.1 Basic Perpetual American Put	347
29.3 BASIC PERPETUAL AMERICAN CALL	350
29.4 PERPETUAL AMERICAN CALL/PUT MODEL WITH DIVIDENDS	352
	554

.____

Y

29.5 THE PERPETUAL AMERICAN CALL, CONTINUOUS	
DIVIDENDS	357
EXERCISE	362
FURTHER READING	362
CHAPTER 30 • Options on Multiple Underlying Assets	363
30.1 INTRODUCTION	363
30.2 EXCHANGE OPTIONS	365
EXERCISE	373
FURTHER READING	373
CHAPTER 31 Interest Rate Models	375
31.1 CHAPTER SUMMARY	375
31.2 SETTING THE STAGE FOR STOCHASTIC INTEREST RATE MODELS	375
31.3 PRICING WHEN YOU CANNOT TRADE THE	
UNDERLYING ASSET	377
31.4 HEDGING BONDS IN CONTINUOUS TIME	380
31.5 SOLVING THE BOND PRICING PDE	383
31.6 VASICEK MODEL	386
31.7 SUMMARY	395
EXERCISES	395
FURTHER READING	396
CHAPTER 32 Incomplete Markets	397
32.1 CHAPTER SUMMARY	397
32.2 INTRODUCTION TO INCOMPLETE MARKETS	397
32.3 TRYING TO HEDGE OPTIONS ON A	
TRINOMIAL TREE	398
32.3.1 Review of the Standard Binomial Tree Model	398
32.3.2 Extension to a Trinomial Tree Model	400
32.4 MINIMUM VARIANCE HEDGING OF A	
EUROPEAN OPTION WITH DEFAULT	408
32.4.1 Binomial Tree Model for Option Pricing	408

xvi ■ Contents

32.5 BINOMIAL TREE MODEL WITH DEFAULT RISK	409
EXERCISE	412
FURTHER READING	413

APPENDIX 1: PROBABILITY THEORY BASICS, 415

APPENDIX 2: PROOF OF DEMOIVRE–LAPLACE THEOREM, 475

APPENDIX 3: NAMING VARIABLES IN EXCEL, 481

APPENDIX 4: BUILDING VBA MACROS FROM EXCEL, 485

INDEX, 501

-.2