Introductory Econometrics for Finance

THIRD EDITION

Chris Brooks

The ICMA Centre, Henley Business School, University of Reading

Introductory Econometrics for Finance

THIRD EDITION

Chris Brooks

The ICMA Centre, Henley Business School, University of Reading

Contents

	List c	of figures	page xii
	List of tables		
	List c	of boxes	xvii
	List c	of screenshots	xix
	Prefa	ce to the third edition	xxi
	Ackn	owledgements	XXV
1	Intro	duction	1
	1.1	What is econometrics?	2
	1.2	Is financial econometrics different from 'economic	
		econometrics'?	2
	1.3	Types of data	4
	1.4	Returns in financial modelling	7
	1.5	Steps involved in formulating an econometric model	11
	1.6	Points to consider when reading articles in empirical	
		finance	12
	1.7	A note on Bayesian versus classical statistics	13
	1.8	An introduction to EViews	14
	1.9	Further reading	24
	1.10	Outline of the remainder of this book	24
2	Math	nematical and statistical foundations	28
	2.1	Functions	28
	2.2	Differential calculus	37
	2.3	Matrices	41
	2.4	Probability and probability distributions	56
	2.5	Descriptive statistics	61
3	A brief overview of the classical linear regression model		75
	3.1	What is a regression model?	75
	3.2	Regression versus correlation	76
	3.3	Simple regression	76
	3.4	Some further terminology	84
	3.5	Simple linear regression in EViews – estimation of an optimal	
		hedge ratio	86

	3.6	The assumptions underlying the classical linear regression			
		model	9(
	3.7	Properties of the OLS estimator	9		
	3.8	Precision and standard errors	93		
	3.9	An introduction to statistical inference	98		
	3.10	A special type of hypothesis test: the <i>t</i> -ratio	111		
	3.11	An example of a simple <i>t</i> -test of a theory in finance: can US			
		mutual funds beat the market?	113		
	3.12	Can UK unit trust managers beat the market?	115		
	3.13	The overreaction hypothesis and the UK stock market	116		
	3.14	The exact significance level	120		
	3.15	Hypothesis testing in EViews – example 1: hedging revisited	121		
	3.16	Hypothesis testing in EViews – example 2: the CAPM	123		
		Appendix: Mathematical derivations of CLRM results	127		
4	Furth	er development and analysis of the classical linear			
	_	ession model	134		
	4.1	Generalising the simple model to multiple linear regression	134		
	4.2	The constant term	135		
	4.3	How are the parameters (the elements of the β vector) calculated in the generalised case?	137		
	4.4	Testing multiple hypotheses: the <i>F</i> -test	137		
	4.5		144		
	4.5 4.6	Sample EViews output for multiple hypothesis tests Multiple regression in EViews using an APT-style model	144		
	4.0 4.7		150		
	4.8	Data mining and the true size of the test Goodness of fit statistics	150		
	4.9		156		
	4.10	Hedonic pricing models	159		
	4.11	Tests of non-nested hypotheses	161		
	4.11	Quantile regression Appendix 4.1: Mathematical derivations of CLRM results	168		
		Appendix 4.1. Mathematical derivations of CERAW results Appendix 4.2. A brief introduction to factor models and principal	100		
		components analysis	17 0		
		components analysis	170		
5	Classical linear regression model assumptions and diagnostic tests				
	5.1	Introduction	179		
	5.2	Statistical distributions for diagnostic tests	180		
	5.3	Assumption 1: $E(u_t) = 0$	181		
	5.4	Assumption 2: $var(u_t) = \sigma^2 < \infty$	181		
	5.5	Assumption 3: $cov(u_i, u_j) = 0$ for $i \neq j$	188		
	5.6	Assumption 4: the x_t are non-stochastic	208		
	5.7	Assumption 5: the disturbances are normally distributed	209		
	5.8	Multicollinearity	217		
	5.9	Adopting the wrong functional form	220		
	5.10	Omission of an important variable	224		
	5 11	Inclusion of an irrelevant variable	225		

	•	
Contents	•	vii
Coments	•	VII

	5.12	Parameter stability tests	226		
	5.13	Measurement errors	235		
	5.14	A strategy for constructing econometric models and a discussion			
		of model-building philosophies	238		
	5.15	Determinants of sovereign credit ratings	240		
6	Univariate time series modelling and forecasting				
	6.1	Introduction	251		
	6.2	Some notation and concepts	252		
	6.3	Moving average processes	256		
	6.4	Autoregressive processes	259		
	6.5	The partial autocorrelation function	266		
	6.6	ARMA processes	268		
	6.7	Building ARMA models: the Box-Jenkins approach	273		
	6.8	Constructing ARMA models in EViews	276		
	6.9	Examples of time series modelling in finance	281		
	6.10	Exponential smoothing	283		
	6.11	Forecasting in econometrics	285		
	6.12	Forecasting using ARMA models in EViews	296		
	6.13	Exponential smoothing models in EViews	299		
7	Multivariate models				
	7.1	Motivations	305		
	7.2	Simultaneous equations bias	307		
	7.3	So how can simultaneous equations models be validly estimated?	308		
	7.4	Can the original coefficients be retrieved from the π s?	309		
	7.5	Simultaneous equations in finance	311		
	7.6	A definition of exogeneity	312		
	7.7	Triangular systems	314		
	7.8	Estimation procedures for simultaneous equations systems	315		
	7.9	An application of a simultaneous equations approach to modelling			
		bid-ask spreads and trading activity	318		
	7.10	Simultaneous equations modelling using EViews	323		
	7.11	Vector autoregressive models	326		
	7.12	Does the VAR include contemporaneous terms?	332		
	7.13	Block significance and causality tests	333		
	7.14	VARs with exogenous variables	335		
	7.15	Impulse responses and variance decompositions	336		
	7.16	VAR model example: the interaction between property returns			
		and the macroeconomy	338		
	7.17	VAR estimation in EViews	344		
8	Mod	elling long-run relationships in finance	353		
	8.1	Stationarity and unit root testing	353		
	8.2	Tests for unit roots in the presence of structural breaks	365		

	8.3	Testing for unit roots in EViews	369
	8.4	Cointegration	373
	8.5	Equilibrium correction or error correction models	375
	8.6	Testing for cointegration in regression: a residuals-based approach	37 <i>e</i>
	8.7	Methods of parameter estimation in cointegrated systems	377
	8.8	Lead-lag and long-term relationships between spot and futures	
		markets	380
	8.9	Testing for and estimating cointegrating systems using the	
		Johansen technique based on VARs	386
	8.10	Purchasing power parity	390
	8.11	Cointegration between international bond markets	391
	8.12	Testing the expectations hypothesis of the term structure of	
		interest rates	398
	8.13	Testing for cointegration and modelling cointegrated systems	
		using EViews	400
9	Мос	lelling volatility and correlation	415
	9.1	Motivations: an excursion into non-linearity land	415
	9.2	Models for volatility	420
	9.3	Historical volatility	420
	9.4	Implied volatility models	421
	9.5	Exponentially weighted moving average models	421
	9.6	Autoregressive volatility models	422
	9.7	Autoregressive conditionally heteroscedastic (ARCH) models	423
	9.8	Generalised ARCH (GARCH) models	428
	9.9	Estimation of ARCH/GARCH models	431
	9.10	Extensions to the basic GARCH model	439
	9.11	Asymmetric GARCH models	440
	9.12	The GJR model	440
	9.13	The EGARCH model	441
	9.14	GJR and EGARCH in EViews	441
	9.15	Tests for asymmetries in volatility	443
	9.16	GARCH-in-mean	445
	9.17	Uses of GARCH-type models including volatility forecasting	446
	9.18	Testing non-linear restrictions or testing hypotheses about	
		non-linear models	452
	9.19	Volatility forecasting: some examples and results from the	
		literature	454
	9.20	Stochastic volatility models revisited	461
	9.21	Forecasting covariances and correlations	463
	9.22	Covariance modelling and forecasting in finance: some	
		examples	464
	9.23	Simple covariance models	466
	9.24	Multivariate GARCH models	467
	0.25	Direct correlation models	171

		-	
	Contents	:	ix

	9.26	Extensions to the basic multivariate GARCH model	472
	9.27	A multivariate GARCH model for the CAPM with	4
	0.20	time-varying covariances	474
	9.28	Estimating a time-varying hedge ratio for FTSE stock index	455
	0.20	returns	475
	9.29	Multivariate stochastic volatility models	478
	9.30	Estimating multivariate GARCH models using EViews	480
		Appendix: Parameter estimation using maximum likelihood	484
10	Switch	ning models	490
	10.1	Motivations	490
	10.2	Seasonalities in financial markets: introduction and literature	
		review	492
	10.3	Modelling seasonality in financial data	493
	10.4	Estimating simple piecewise linear functions	500
	10.5	Markov switching models	502
	10.6	A Markov switching model for the real exchange rate	503
	10.7	A Markov switching model for the gilt-equity yield ratio	506
	10.8	Estimating Markov switching models in EViews	510
	10.9	Threshold autoregressive models	513
	10.10	Estimation of threshold autoregressive models	515
	10.11	Specification tests in the context of Markov switching and	
		threshold autoregressive models: a cautionary note	516
	10.12	A SETAR model for the French franc-German mark exchange	
		rate	517
	10.13	Threshold models and the dynamics of the FTSE 100 index and	
		index futures markets	519
	10.14	A note on regime switching models and forecasting accuracy	523
11	Panel	data	526
	11.1	Introduction – what are panel techniques and why are they used?	526
	11.2	What panel techniques are available?	528
	11.3	The fixed effects model	529
	11.4	Time-fixed effects models	531
	11.5	Investigating banking competition using a fixed effects model	532
	11.6	The random effects model	536
	11.7	Panel data application to credit stability of banks in Central and	
		Eastern Europe	537
	11.8	Panel data with EViews	541
	11.9	Panel unit root and cointegration tests	547
	11.10	Further reading	557
12	Limited	d dependent variable models	559
	12.1	Introduction and motivation	559
	12.2	The linear probability model	560
		1 /	

	12.3	The logit model	562
	12.4	Using a logit to test the pecking order hypothesis	563
	12.5	The probit model	565
	12.6	Choosing between the logit and probit models	565
	12.7	Estimation of limited dependent variable models	565
	12.8	Goodness of fit measures for linear dependent	
		variable models	567
	12.9	Multinomial linear dependent variables	568
	12.10	The pecking order hypothesis revisited – the choice between	
		financing methods	571
	12.11	Ordered response linear dependent variables models	574
	12.12	Are unsolicited credit ratings biased downwards? An ordered	
		probit analysis	574
	12.13	Censored and truncated dependent variables	579
	12.14	Limited dependent variable models in EViews	583
		Appendix: The maximum likelihood estimator for logit and	
		probit models	589
13	Simul	ation methods	591
	13.1	Motivations	591
	13.2	Monte Carlo simulations	592
	13.3	Variance reduction techniques	593
	13.4	Bootstrapping	597
	13.5	Random number generation	600
	13.6	Disadvantages of the simulation approach to econometric or	
		financial problem solving	601
	13.7	An example of Monte Carlo simulation in econometrics:	
		deriving a set of critical values for a Dickey-Fuller test	603
	13.8	An example of how to simulate the price of a financial	
		option	607
	13.9	An example of bootstrapping to calculate capital risk	
		requirements	613
14		ucting empirical research or doing a project or	
	disser	tation in finance	626
	14.1	What is an empirical research project and what is it for?	626
	14.2	Selecting the topic	627
	14.3	Sponsored or independent research?	629
	14.4	The research proposal	631
	14.5	Working papers and literature on the internet	631
	14.6	Getting the data	633
	14.7	Choice of computer software	634
	14.8	Methodology	634
	14.9	Event studies	634
	14.10	Tests of the CAPM and the Fama-French Methodology	648

		Contents	. xi
	14.11 How might the finished project look?		661
	14.12 Presentational issues		666
Appendix 1	Sources of data used in this book		667
Appendix 2	Tables of statistical distributions		668
	Glossary		680
	References		697
	Index		710