Detailed Contents

LIST OF TABLES xv
LIST OF FIGURES xvii
LIST OF ABBREVIATIONS xxii
FOREWORD by Dr K. Kumar xxv
PREFACE xxvii
ACKNOWLEDGEMENTS xxxi
ABOUT THE AUTHOR xxxiii

Chapter 1: TQM: Evolution, Models and Frameworks 1
1.1 Evolution of Total Quality Management 1
 1.1.1 The Term—Quality 2
 1.1.2 Defining Quality Control 4
 1.2 Total Quality Loop—Existing Work on Total Quality and Total Quality Management 7
 1.2.1 Absolutes of Total Quality—Deming, Juran, Feigenbaum and Crosby 7
1.3 Classical Approaches to Total Quality Management 10
 1.3.1 The Quality Leadership Context 11
 1.3.2 Attitudes Theory 11
 1.3.3 Total Quality Management as a System 12
 1.3.4 Customer–Supplier Chains 13
1.4 Developed Models of Total Quality Management 14
 1.4.1 The Oakland Model 14
 1.4.2 Integrated Model of Total Quality Management 16
 1.4.3 Building Blocks Model of Total Quality Management 16
 1.4.4 Westinghouse Total Quality Model 17
 1.4.5 Award Criteria Framework Models 18
1.5 The Contemporary Total Quality Management and Business Excellence Models: Quality Assessment-based Frameworks 21
 1.5.1 Rajiv Gandhi National Quality Award 21
 1.5.2 CII–EXIM Bank Award for Business Excellence 22
 1.5.3 Golden Peacock National Quality Award 23
 Industry Snapshot 1.1: Business Excellence Through Quality at Tata 29

Chapter 2: TQM and Design 34
2.1 Basic Design Concepts and Total Quality Management 34
 2.1.1 ISO System of Limits and Fits 35
 2.1.2 Dimensional Control Through Gauging 38
2.2 Measurement System Evaluation 39
 2.2.1 Calibration 40
 2.2.2 Uncertainty of Measurement 41
Chapter 6: The Six Sigma Approach

6.1 Introduction 204
6.2 Six Sigma Approach: Various Definitions 206
6.3 Six Sigma: The Statistical Basis 207
6.4 The Six Sigma Metrics 210
 6.4.1 Defects per Unit 211
 6.4.2 Defects per Million Opportunities 211
 6.4.3 Process Capability 213
 6.4.4 Rolled Throughput Yield 220
 6.4.5 Process Cycle Time 221
 6.4.6 Gauge Repeatability and Reproducibility 222
6.5 Cost of Quality 222
6.6 Six Sigma Tools and Implementation Methodologies 227
 6.6.1 Six Sigma Tools 227
6.7 The DMAIC Methodology 229
 6.7.1 The 'Define' Phase 230
 6.7.2 The 'Measure' Phase 232
 6.7.3 The 'Analyse' Phase 233
 6.7.4 The 'Improve' Phase 234
 6.7.5 The 'Control' Phase 235
 6.7.6 Alternative Approaches to DMAIC Methodology 236
6.8 The DFSS/DMADV Methodology 237
 6.8.1 The 'Define' Phase 238
 6.8.2 The 'Measure' Phase 238
 6.8.3 The 'Analyse' Phase 239
 6.8.4 The 'Design' Phase 239
 6.8.5 The 'Verify' Phase 240
 6.8.6 Alternative Approaches to DFSS/DMADV 240
6.9 Six Sigma Roles and Responsibilities 242
 6.9.1 The Project Sponsor or Champion 243
 6.9.2 The Master Black Belts 244
 6.9.3 The Black Belts 244
 6.9.4 Black Belt Selection 245
 6.9.5 The Green Belts 246
 6.9.6 The White Belts 247
 6.9.7 Some Examples of Belt Training in Organisations 248
6.9.8 Six Sigma Project Selection 248
6.9.9 Project Selection by Global Companies 249
6.10 Business Results Post Implementation of Six Sigma 249
Industry Snapshot 6.1 Six Sigma Implementation in Corporate World 250

Chapter 7: TQM and Advanced Manufacturing Technology and Systems 255

7.1 Advanced Manufacturing Technology 256
7.1.1 Workplace Improvement Tools 257
7.1.2 Optimised Production Technology and Theory of Constraints 258
7.1.3 Flexible Manufacturing Systems 260
7.1.4 Manufacturing Resource Planning 264

7.2 Total Quality Management and Total Preventative Maintenance 267
7.2.1 Condition-based Monitoring 267
7.2.2 Methods for Condition-based Maintenance for Monitoring Quality in the Process 268
7.2.3 Control System for Planned Maintenance 271
7.2.4 Calibration for Maintenance 275
7.2.5 Total Quality of Maintenance 276
7.2.6 Total Preventative Maintenance 276

7.3 Total Quality Management and Total Safety Systems 278
7.3.1 Total Quality Management-based Approach to Safety Systems 279
7.3.2 Combining Total Quality Management and Safety with Total Productive Maintenance 281

7.4 Total Quality Management and Just In Time 283
7.4.1 The Foundation of Just In Time 283
7.4.2 Complementarity of a Total Quality System and Just-in-time System 289

7.5 Total Quality Management and Lean Production 298
7.5.1 Principles of Lean Thinking 299

Industry Snapshot 7.1 TPM at Hindustan Unilever Ltd (HUL) 301

Chapter 8: TQM and the Customer 304

8.1 Customer: The Ultimate Inspector 304
8.2 Customer Satisfaction Measurements 305
8.2.1 Overall Satisfaction Versus Index of Satisfaction 307
8.3 Some Customer Satisfaction Determinants 307

8.4 Total Quality Management and Product Liability 311
8.4.1 Protection of Liability Claims Through Communications and Advertising 312
8.4.2 Compromise with Product Liability 315
8.4.3 Legal Aspects and Consumer Protection Mechanism in India 315

8.5 Total Quality Management in Services 318
8.5.1 Dimensions of Service Quality 318
Quality in Practice Reliability and Quality Metrics at Tata Power 322
Industry Snapshot 8.1 Enhancing Quality and Reliability at Komatsu 324

Chapter 9: Toolkit for TQM 333

9.1 Q-7 Tools 333
9.2 New Q-7 Tools 344
9.3 Quality Function Deployment 361
9.3.1 The House of Quality 362
9.3.2 Quality Function Deployment Methodology 365
9.3.3 Benefits of Quality Function Deployment 370

Industry Snapshot 9.1 Quality Goals Deployment at STMicroelectronics 371
Chapter 10: Quality Management Systems

10.1 Difference Between ISO 9000 and Total Quality Management Approaches

10.2 Quality Management System
 10.2.1 Elements of Quality System

10.3 ISO 9000: General
 10.3.1 Quasi-legal Implications of ISO 9000

10.4 The ISO 9000 (Revised): Standards
 10.4.1 Process Approach
 10.4.2 ISO 9001 Versus ISO 9004
 10.4.3 Salient Features of Revised ISO 9001

10.5 The QS-9000 System
 10.5.1 Sector-specific Requirements
 10.5.2 Customer-specific Requirements

10.6 Quality Audits
 10.6.1 Types of Audits
 10.6.2 Need for Quality Audits
 10.6.3 Classification of Audits
 10.6.4 Planning for Audit
 10.6.5 Role of People Connected with Audit
 10.6.6 Qualification Criteria for Quality System Auditors
 10.6.7 Stages of an Audit

Industry Snapshot 10.1 Ford's Q-101 System, The 'Grand Daddy' of Quality Systems

Chapter 11: Concurrent Implementation of QMS, EMS and OHSAS: Integrated Management Systems

11.1 The Environmental Management System; ISO 14000 Standards
 11.1.1 Major Elements of Environmental Management System Standards
 11.1.2 Environmental Management System

11.2 BCMS—Business Continuity Management System
 11.2.1 The ISO 22301: Business Continuity Management System

11.3 Information Security System Standards; ISO 27001
 11.3.1 Structure of the Standard
 11.3.2 ISMS Scope and Statement of Applicability

11.4 Social Accountability Standards (SA 8000)

11.5 WHO-GMP Standards
 11.5.1 GMP Guidance

11.6 Hazard and Operability Study and Hazard Analysis and Critical Control Point
 11.6.1 Hazard and Operability Study
 11.6.2 Hazard Analysis and Critical Control Point

11.7 Concurrent implementation of QMS, EMS and OHSAS with Total Preventive Maintenance

11.8 A Case for Unification of Safety, Health, Environment, Maintenance and Quality Management Systems
 11.8.1 Alignment of Quality and Environment Management Systems and OH&S with Total Quality Management

Quality in Practice Implementing TPM

Industry Snapshot 11.1 Implementation of Integrated Management Systems at Tata Power

APPENDIX

INDEX