CONTENTS

Preface

1	Intro	oduction	1	1	
	11	1.1 Historical Introduction			
			ew of the Approach Taken in This Book	1	
			ques of Surface Analysis	5	
2	The	Structu	re of Solid Surfaces and Adsorbate Overlayers	15	
	2.1	Histor	ical Introduction	15	
	2.2	Qualita	ative Description of Surface Structure	17	
	2.3		tative Description of the Structure of Solids and Surfaces	20	
		2.3.1	Two-Dimensional Bravais Lattices	20	
		2.3.2	Extension to Slabs and Surfaces	26	
		2.3.3	Three-Dimensional Bravais Lattices	27	
	2.4	Miller	Indices	33	
	2.5	The St	ructure of Solid Surfaces	37	
		2.5.1	Models of Ideal Single-Crystal Surfaces	37	
		2.5.2	The Stereographic Triangle	39	
		2.5.3	The Structure of Stepped Metal Surfaces	42	
			The Surface Structure of Semiconductor Crystals	46	
	2.6	Relaxa	tions and Surface Reconstructions	48	
		2.6.1	Rare Gas Crystals	51	
			Metals	53	
		2.6.3	Elemental Semiconductor Surfaces	57	
		2.6.4	Ionic Crystal	59	
		2.6.5	Compound Semiconductors	62	
	2.7	Descri	ptive Notation for Surface Reconstructions	64	
	2.8			66	
			ening and Surface Melting	67	
			Examples	68	
	2.11		mental Material	89	
		2.11.1	Proof That There Can Only Be Two-, Three-, Four-,		
			and Sixfold Axes in an Infinite Periodic Two-		
			Dimensional Lattice	89	
			The Reciprocal Lattice	93	
		2.11.3	Somorjai Step Notation	94	

xiii

2.11.4	The Correspondence of Planes in BCC and	
	FCC Lattices	94
Problem	ns	95

3	Adsorption I: The Binding of Molecules to Surfaces			
	3.1	Historical Overview	108	
	3.2	Chemisorption of Gases on Surfaces	113	
		3.2.1 The Nature of the Adsorbed Layer	116	
		3.2.2 More Complex Behavior	120	
		3.2.3 The Geometry of the Adsorbed Layer	122	
	3.3	Modeling Molecule-Surface Binding: Physisorption	126	
	3.4	Simple Models of Chemisorption	133	
		3.4.1 Some Results from Density Functional Theory	142	
		3.4.2 Electronegativity Equalization	147	
	3.5	Quantum Mechanical Methods	150	
	3.6	Adsorption on Metals	152	
		3.6.1 Cluster Models of Adsorption on Surfaces	152	
	3.7	The Surface Electronic Structure	158	
		3.7.1 The Jellium Model of Metal Surfaces	158	
		3.7.2 Quantification of the Jellium Model	160	
	3.8	Adsorption on Jellium	163	
		3.8.1 The Newns-Anderson Model	164	
		3.8.2 Lang–Williams Theory	167	
		3.8.3 Qualitative Results	173	
	3.9	The Need for an Improved Model	177	
	3.10	The Effective Medium Model	178	
		3.10.1 Summary of Predictions of the Effective Medium		
		Model for the Adsorption on Metal Surfaces	182	
	3.11	More Advanced Computational Methods	194	
		3.11.1 Slab Calculations	194	
		3.11.2 Embedded Cluster Method	195	
		3.11.3 Predictions of the Advanced Computational Methods	196	
		Summary of Adsorption on Metals	197	
	3.13	Adsorption on Semiconductor Surfaces	197	
		3.13.1 The Surface Electronic Structure of Semiconductors	198	
		3.13.2 Bonding to Semiconductor Surfaces	199	
		3.13.3 A Two-State Model for Adsorption on Semiconductors	203	
	3.14	Adsorption on Ionic Surfaces	206	
		3.14.1 The Surface Electronic Structure of Insulating Oxides	207	
		3.14.2 Adsorption on Insulating Surfaces	207	
	3.15		209	
	3.16	Solved Examples	210	
		Problems	215	

4	Adsorption II: Adsorption Isotherms			235
	4.1	Introduction		235
	4.2	Analytical Models f	or Reversible Monolayer Adsorption	239
	4.3	Langmuir Adsorptio	on Model	239
		4.3.1 Kinetic Deri	vation of the Langmuir	
		Adsorption 1	Isotherm	240
		4.3.2 Comparison	to Data	245
	4.4	Modifications of the	e Langmuir Adsorption Isotherm:	
		Inequivalent Sites		246
		4.4.1 The Freundl	ich Adsorption Isotherm	247
		4.4.2 The Multisit	e Model	248
	4.5	Adsorbate/Adsorbat	e Interactions	248
		4.5.1 The Tempki	n Adsorption Isotherm	250
		4.5.2 The Fowler	Adsorption Isotherm	252
			tical Adsorption Isotherms	252
		4.5.4 Summary of	Analytical Models	252
	4.6	Adsorbate Phase Be		254
	4.7	Lattice Gas Models		257
			of the Basic Equations	258
		4.7.2 Conversion		262
			the Solution Methods	263
			on for the One-Dimensional Ising Model:	264
		F = 0 4.7.5 Exact Solution	on for the One-Dimensional Ising Model:	204
		4.7.5 Exact Solution $F \neq 0$	on for the One-Dimensional Ising Model.	266
		4.7.6 Exact Solution	on: Adsorption on an Infinite Strip	273
	4.8	Monte Carlo Solutio	n	275
		4.8.1 Oualitative H	Results	277
	4.9	Approximation Met	hods: The Bragg-Williams Approximation	284
			s Approximate Solution	285
			Bethe Approximation	287
		4.9.3 The Kukuch	i Cluster Approximation	289
		4.9.4 Quasichemic	cal Approximation	290
	4.10	Incommensurate Ad	lsorption	291
		4.10.1 Two-Dime	nsional Equations of State:	
		Ideal Lattic		293
			-Dimensional Equations of State	295
		4.10.3 Monte Carl	lo Solution	295
	4.11	Perspective		297
	4.12	Multilayer Adsorption		299
			Adsorption Isotherm	299
			apillary Condensation, and Other	
		Advanced '	Topics	302
	4.13	Solved Examples		303
	4.14	Supplemental Mater	nal	330
		Problems		336

5	Adsorption III: Kinetics of Adsorption			
	5.1	5.1 Historical Overview		
	5.2	2 Scattering, Trapping, and Sticking		
	5.3	Trapping	356	
	5.4	Baule's Hard Sphere Model	359	
		5.4.1 The Baule-Weinberg-Merrill Approximation for		
		Trapping Probabilities	361	
		5.4.2 An Improved Baule Hard Sphere Model: Ion Cores		
		in Jellium	363	
	5.5	Cube Models	369	
	5.6	Zwanzig's Lattice Model	370	
	5.7	Molecular Dynamics Simulations of Lattice Models	374	
	5.8 Sticking 5.9 Models for the Variation in the Sticking Probability with		377	
		Energy and Coverage	383	
		5.9.1 Langmuir's Model	384	
		5.9.2 Relationship to the Langmuir Adsorption Isotherm	384	
		5.9.3 Limitations of Langmuir's Analysis	385	
		5.9.4 Models for Precursor-Moderated Adsorption	386	
	5.10	Immobile Adsorption	390	
		5.10.1 Exact Solution for Adsorption on a Line of Sites	396	
		5.10.2 Series Solution: Adsorption on a Two-Dimensional		
		Array of Sites	401	
	5.11	The Role of Active Centers in Adsorption	404	
	5.12	•	405	
	5.13	Perspective	407	
	5.14	-	408	
		Problems	423	

6	Intr	Introduction to Surface Reactions		
	6.1	Introduction	438	
	6.2	General Mechanisms of Surface Reactions	444	
	6.3 Systematic Trends in the Rates and Mechanisms of Surface			
		Reactions	448	
		6.3.1 Reactions on Metals	448	
		6.3.2 Structure-Sensitive Reactions	456	
		6.3.3 "Models" of Structure Sensitivity	461	
		6.3.4 The Effects of Varying Composition	468	
		6.3.5 The Effects of Alloys, Promoters, and Poisons	469	
	6.4	Reactions on Insulators	471	
	6.5	Reactions on Semiconductors	473	
	6.6	Summary and Plans for the Remainder of This Book	476	
		Problems	476	

7	Rate	Laws for Reactions on Surfaces I: Kinetic Models	482
	7.1	482	
	7.2	Kinetics of Surface Reactions	483
	7.3	The Langmuir Rate Equation	488
	7.4	Langmuir, Hougen, and Watson Rate Laws	491
		7.4.1 Comparison to Data	498
		7.4.2 Mars-Van Klevan Kinetics	500
		7.4.3 Tempkin Kinetics	501
	7.5	Relationship to Mechanisms of Reactions	504
	7.6	Evidence for More Complex Kinetics	506
	7.7	Temperature Programmed Desorption	507
		7.7.1 Redhead's Analysis of TPD	509
		7.7.2 Comparison to Data	514
	7.8	Improved Analysis of TPD Data	515
	7.9	Bragg-Williams Approximation	519
	7.10	Monte Carlo Simulation of TPD	522
		First-Order Desorption	523
	7.12	Results for Ising Universality Class: First Nearest Neighbor	
		Interactions	523
		7.12.1 Qualitative Picture of the φ 's	524
		7.12.2 Effects of Ordering on TPD Spectra	533
	7.13	Precursor-Moderated Desorption	540
	7.14	Comparison of the Methods	542
	7.15	Monte Carlo Simulation of Surface Reactions	547
		Dissociative Adsorption	548
		Formation of Pairs of Molecules on the Surface	548
	7.18	The Immobile Limit	549
		7.18.1 Implications for TPD	550
	7.19	The Completely Mobile Limit	551
		7.19.1 Bethe Approximation	553
		7.19.2 Implications for TPD	554
	7.20	Changes in the Order of Steady-State Reactions	556
		A + B Reactions	557
		7.21.1 The Mobile Limit	558
		7.21.2 The Immobile Limit	562
	7.22	Multiple Steady States and Oscillations	564
		Precursor Reactions	564
	7.24	Dynamic Corrections	565
		Summary	567
	7.26	Solved Examples	568
		Problems	571
8	A Review of Reaction-Rate Theory		
	8.1	Historical Introduction	581
	8.2	Collision Theory	582

	8.3	3.4 Molecular Dynamics Simulation of Reactive Collisions: Linear	
	8.4		
		$A + BC \rightarrow AB + C$	585
	8.5	The Nonlinear Case	588
		8.5.1 Derivation of the Angular Momentum Barrier to	
		Reaction	590
	8.6	The Angular Momentum Barriers to Reaction	595
		8.6.1 Influence on the Overall Rate	595
	8.7	Energy Transfer Barrier to Unimolecular Reactions	596
	8.8	MD/MC Calculations of Reaction-Rate Constants	599
	8.9		599
	8.10		602
	8.11	•	603
		Unimolecular Reactions	606
	8.13		606
	8.14		608
	8.15	••	608
		8.15.1 Tunneling	608
		Problems	610
9	Mode	els of Potential Energy Surfaces: Reactions as Curve	
-		sings and Electron Transfer Processes	618
	9.1	Introduction	618
	9.2	Empirical Correlations for Reaction Rates: The Polayni	
		Relationship and Brønsted Catalysis Law	619
	9.3	Reactions as Bond Extensions Plus Curve Crossings	622
	9.4	The Polayni Relationship	625
	9.5	The Marcus Equation	627
		9.5.1 An Alternative Derivation: Bond Energy-Bond Order	
		Relationship	629
		9.5.2 Qualitative Features of the Marcus Equation	630
		9.5.3 The Hammond Postulate	633
		9.5.4 Application of the Marcus Equation: Tafel Kinetics	634
		9.5.5 Nonlinear Behavior	635
	9.6	Applications of Linear Free-Energy Relationships and the	
	07	Marcus Equation in Organic Chemistry	639
	9.7	Group Contribution Methods	646
	9.8 9.9	Relationship between the Various Transfer Coefficients Applications of the Marcus Equation in Inorganic Chemistry	647
	9.9 9.10	Reactions as Electron Transfer Processes	648 651
	9.10		
		9.10.1 Perturbation Theory 9.10.2 Some Results from Density Functional Theory	651
	•••		652
	9.11		656
	9.12	8	656
	9.13	Symmetry Forbidden Reactions	665
		9.13.1 Forbidden Crossings	666

		9.13.2	Reactions with Negligible Coupling	669
		9.13.3	Conservation of Orbital Symmetry	674
		9.13.4	Some Results from Group Theory	675
		9.13.5	Examples of Symmetry Allowed and Symmetry	
		1	Forbidden Reactions	677
	9.14	Prediction	n of Mechanisms of Gas Phase Reactions	677
	9.15	Application	ons: Learning about Transition States for Reactions	680
	9.16	Summary		683
	9.17	Suppleme	ental Examples	683
		Problems		686
10	Rates	and Mec	hanisms of Surface Reactions	695
	10.1	Historic	al Introduction	695
	10.2	Radical	Reactions in the Gas Phase	696
	10.3	Introduc	tion to the Role of the Surface: Stabilization	
		of Interr	nediates	700
	10.4		dynamic Effects	705
	10.5		ental Limitations of the Analysis in Section 10.3	710
	10.6	BOC-M	P Modeling	711
		10.6.1	Derivation of the BOC-MP Method	713
	10.7	Fundame	ental Limitations of the BOC-MP and	
		Polayni	Methods	714
	10.8	Surface	Reactions as Chain-Propagation Reactions	717
	10.9 Variation in the Intrinsic Barriers to Reaction with Changing			
		Reaction	Types	718
		10.9.1	An Example of the Prediction of Reaction	
			Mechanisms	719
	10.10	A Modif	fied BOC-MP Method	721
			ximity Effect	722
	10.12		of Surface Geometry on the Intrinsic Barriers	
		to React	-	725
	10.13	Holding	the Reactants in a Position Conducive to Reaction	726
	10.14	The Rol	e of Surface Electronic Structure on the Intrinsic	
		Barriers	to Reaction	729
		10.14.1	The Influence of Interstitial Electron Density on the	
			Intrinsic Barriers to Reaction	730
	10.15	The Role	e of d-Bands in Modifying the Intrinsic Barriers	
	-	to React		731
		10.15.1	The Role of Antibonding Orbitals in the H ₂	
			Dissociation Process	733
		10.15.2		
			Scission: Quantum Derivation	736
		10.15.3		
			Section 10.15.2	739
		10.15.4	Implications to the Intrinsic Barrier to H ₂ Bond	
			Scission	740

	10.15.5	Analogy to Symmetry Forbidden Reactions	741
		Extension to Other Bond Scission Processes	741
10.16	The Role	of Net Charges	742
	10.16.1	Electronic Effects in the Binding of Molecules	
		on Surfaces	746
10.17	Summary	of the Factors that Influence the Intrinsic Barriers to	
	Bond Sci	ssion	746
10.18	The Effec	cts of Surface Structure on Reactions: Metals	747
	10.18.1	Models for the Overall Trends in the Structural	
		Sensitivity of Elementary Bond Scission Reactions	
		on Metals	749
	10.18.2	Detailed Models of the Structure Sensitivity of	
		Reactions on Metal Surfaces	750
10.19			752
10.20	Variation	s in the Interactions with the d-Bands	753
	10.20.1	Models for the Influence of the d-Bands on the	
		Structure Sensitivity of Surface Reactions	754
10.21	Putting It	All Together: Metals	761
	10.21.1	Copper, Silver, and Gold	761
		Platinum, Palladium, and Nickel	763
	10.21.3	Iridium, Rhodium, Cobalt, Osmium, Ruthenium,	
		Iron, Rhenium, Tungsten, Molybdenum, and	
		Chromium	765
		Rare Earths and Early Transition Metals	767
		Alkali Metals and Alkaline Earths	767
		Aluminum	768
10.22	Putting It	All Together: Insulating Oxides	769
	10.22.1		
		Oxides	774
	10.22.2	Trends with Changing Composition and Surface	
		Structure	776
10.23		All Together: Semiconducting Oxides	776
10.24	•	All Together: Other Systems	780
10.25	Summary		780
	Problems		780
Index			793