CONTENTS

page xvii

xix

xxv

Illustrations

Notes on Contributors

General Editors' Preface

	Acknowledgments	xxix
	Introduction: The Modern Physical and Mathematical Sciences MARY JO NYE	I
	RT I. THE PUBLIC CULTURES OF THE PHYSICAL IENCES AFTER 1800	
I	Theories of Scientific Method: Models for the Physico-Mathematical Sciences NANCY CARTWRIGHT, STATHIS PSILLOS, AND HASOK CHANG	2 I
	Mathematics, Science, and Nature Realism, Unity, and Completeness	22 25
	Positivism From Evidence to Theory Experimental Traditions	28 29 32
2	Intersections of Physical Science and Western Religion in the Nineteenth and Twentieth Centuries FREDERICK GREGORY	36
	The Plurality of Worlds	37
	The End of the World	39
	The Implications of Materialism	43
	From Confrontation to Peaceful Coexistence to Reengagement	46
	Contemporary Concerns	49

3	A Twisted Tale: Women in the Physical Sciences in the	
	Nineteenth and Twentieth Centuries	54
	MARGARET W. ROSSITER	
	Precedents	54
	Great Exceptions	5 5
	Less-Well-Known Women	5 8
	Rank and File - Fighting for Access	59
	Women's Colleges – A World of Their Own	61
	Graduate Work, (Male) Mentors, and Laboratory Access	62
	"Men's" and "Women's" Work in Peace and War	63
	Scientific Marriages and Families	65
	Underrecognition	66
	Post-World War II and "Women's Liberation"	67
	Rise of Gender Stereotypes and Sex-Typed Curricula	70
4	Scientists and Their Publics: Popularization of Science	
	in the Nineteenth Century	72
	DAVID M. KNIGHT	
	Making Science Loved	74
	The March of Mind	75
	Read All About It	76
	Crystal Palaces	77
	The Church Scientific	78
	Deep Space and Time	80
	Beyond the Fringe	83
	A Second Culture?	85
	Talking Down	87
	Signs and Wonders	88
5	Literature and the Modern Physical Sciences	91
	PAMELA GOSSIN	
	Two Cultures: Bridges, Trenches, and Beyond	93
	The Historical Interrelations of Literature and	
	Newtonian Science	95
	Literature and the Physical Sciences after 1800:	
	Forms and Contents	98
	Literature and Chemistry	99
	Literature and Astronomy, Cosmology, and Physics	100
	Interdisciplinary Perspectives and Scholarship	103
	Literature and the Modern Physical Sciences in the History	
	of Science	106
	Literature and the Modern Physical Sciences: New Forms	_
	and Directions	108

Contents	1X

6 Mathematical Schools Communities and Network	
PLACES, INSTRUMENTS, COMMUNICATION	
PART II. DISCIPLINE BUILDING IN THE SCIEN	NCES:

6	Mathematical Schools, Communities, and Networks	113
	DAVID E. ROWE	
	Texts and Contexts	114
	Shifting Modes of Production and Communication	117
	Mathematical Research Schools in Germany	120
	Other National Traditions	123
	Göttingen's Modern Mathematical Community	127
	Pure and Applied Mathematics in the Cold War Era	
	and Beyond	129
7	The Industry, Research, and Education Nexus	133
	Germany as a Paradigm of Heterogeneity	134
	France as a Paradigm of Homogeneity	138
	England as a Case of Underdetermination	143
	The United States as a Case of Polymorphism	147
	The Stone of Sisyphus	152
0		
8	Remaking Astronomy: Instruments and Practice in the Nineteenth and Twentieth Centuries	7.5.4
		154
	ROBERT W. SMITH	7.5.4
	The Astronomy of Position	154 160
	Different Goals	
	Opening Up the Electromagnetic Spectrum	165
	Into Space	167
	Very Big Science	170
9	Languages in Chemistry	174
-	BERNADETTE BENSAUDE-VINCENT	
	1787: A "Mirror of Nature" to Plan the Future	176
	1860: Conventions to Pacify the Chemical Community	181
	1930: Pragmatic Rules to Order Chaos	186
	Toward a Pragmatic Wisdom	189
10	Imagery and Representation in Twentieth-Century	
	Physics	191
	ARTHUR I. MILLER	
	The Twentieth Century	193
	Albert Einstein: Thought Experiments	194
	Types of Visual Images	195
	Atomic Physics during 1913–1925: Visualization Lost	197
	Atomic Physics during 1925-1926: Visualization versus	
	Visualizability	200

Contents x

	Atomic Physics in 1927: Visualizability Redefined	203
	Nuclear Physics: A Clue to the New Visualizability	205
	Physicists Rerepresent	208
	The Deep Structure of Data	209
	Visual Imagery and the History of Scientific Thought	212
	RT III. CHEMISTRY AND PHYSICS: PROBLEMS Rough the Early 1900s	
11	The Physical Sciences in the Life Sciences FREDERIC L. HOLMES Andienties of the Physical Sciences Birls in the	219
	Applications of the Physical Sciences to Biology in the	
	Seventeenth and Eighteenth Centuries Chemistry and Digestion in the Eighteenth Century	221
	Nineteenth-Century Investigations of Digestion and	224
	Circulation	226
	Transformations in Investigations of Respiration	230
	Physiology and Animal Electricity	233
12	Chemical Atomism and Chemical Classification HANS-WERNER SCHÜTT	237
	Chemical versus Physical Atoms	238
	Atoms and Gases	239
	Calculating Atomic Weights	241
	Early Attempts at Classification	243
	Types and Structures	245
	Isomers and Stereochemistry	248
	Formulas and Models	250
	The Periodic System and Standardization in Chemistry	251
	Two Types of Bonds	254
13	The Theory of Chemical Structure and Its Applications ALAN J. ROCKE	255
	Early Structuralist Notions	255
	Electrochemical Dualism and Organic Radicals	257
	Theories of Chemical Types	259
	The Emergence of Valence and Structure	262
	Further Development of Structural Ideas	265
	Applications of the Structure Theory	269
14	Theories and Experiments on Radiation from Thomas	
	Young to X Rays SUNGOOK HONG	272
	The Rise of the Wave Theory of Light New Kinds of Radiation and the Idea of the Continuous Spectrum	272
	The Development of Spectroscopy and Spectrum Analysis	277
	A 110 CONTROL OF SUCCESSION AND ANALYSIS	280

xi

	The Electromagnetic Theory of Light and the Discovery	
	of X Rays	284
	Theory, Experiment, Instruments in Optics	287
15	Force, Energy, and Thermodynamics CROSBIE SMITH	289
	The Mechanical Value of Heat	290
	A Science of Energy	296
	The Energy of the Electromagnetic Field	304
	Recasting Energy Physics	308
16	Electrical Theory and Practice in the	
	Nineteenth Century	311
	BRUCE J. HUNT	
	Early Currents	311
	The Age of Faraday and Weber	312
	Telegraphs and Cables	314
	Maxwell	317
	Cables, Dynamos, and Light Bulbs	319
	The Maxwellians	321
	Electrons, Ether, and Relativity	324
	RT IV. ATOMIC AND MOLECULAR SCIENCES The twentieth century	
17	Quantum Theory and Atomic Structure, 1900–1927	331
	OLIVIER DARRIGOL	
	The Quantum of Action	332
	Quantum Discontinuity	334
	From Early Atomic Models to the Bohr Atom	336
	Einstein and Sommerfeld on Bohr's Theory	339
	Bohr's Correspondence Principle versus Munich Models	340
	A Crisis, and Quantum Mechanics	341
	Quantum Gas, Radiation, and Wave Mechanics	344
	The Final Synthesis	346
18	Radioactivity and Nuclear Physics JEFF HUGHES	350
	Radioactivity and the "Political Economy" of Radium	352
	Institutionalization, Concentration, and Specialization: The	
	Emergence of a Discipline, 1905–1914	355
	"An Obscure Oddity"? Radioactivity Reconstituted, 1919–1925	360
	Instruments, Techniques, and Disciplines: Controversy, 1924–1932 From "Radioactivity" to "Nuclear Physics": A Discipline	362
	Transformed, 1932-1940	368
	Nuclear Physics and Particle Physics: Postwar Differentiation,	
	1045-1060	370

xii Contents

19	Quantum Field Theory: From QED to the Standard Model	375
	SILVAN S. SCHWEBER	
	Quantum Field Theory in the 1930s	377
	From Pions to the Standard Model: Conceptual	
	Developments in Particle Physics	382
	Quarks	388
	Gauge Theories and the Standard Model	391
20	Chemical Physics and Quantum Chemistry in the	
	Twentieth Century ANA SIMÕES	394
	Periods and Concepts in the History of Quantum Chemistry	206
	The Emergence of Quantum Chemistry and the Problem of Reductionism	395
	The Emergence of Quantum Chemistry in National	400
	Context	404
	Quantum Chemistry as a Discipline	407
	The Uses of Quantum Chemistry for the History and	
	Philosophy of the Sciences	411
21	Plasmas and Solid-State Science MICHAEL ECKERT	413
	Prehistory: Contextual versus Conceptual	414
	World War II: A Critical Change	417
	Formative Years, 1945–1960	420
	Consolidation and Ramifications	425
	Models of Scientific Growth	427
22	Macromolecules: Their Structures and Functions	429
	YASU FURUKAWA	
	From Organic Chemistry to Macromolecules	430
	Physicalizing Macromolecules	435
	Exploring Biological Macromolecules	437
	The Structure of Proteins: The Mark Connection	440
	The Path to the Double Helix: The Signer Connection	443
PA	RT V. MATHEMATICS, ASTRONOMY, AND	
CO	SMOLOGY SINCE THE EIGHTEENTH CENTURY	
23	The Geometrical Tradition: Mathematics, Space, and Reason in the Nineteenth Century	
	JOAN L. RICHARDS	449
	The Eighteenth-Century Background	450
	Geometry and the French Revolution	450
	Geometry and the German University	454
	·y	458

	Contents	xiii
	Geometry and English Liberal Education	460
	Euclidean and Non-Euclidean Geometry	462
	Geometry in Transition: 1850–1900	464
24	Between Rigor and Applications: Developments in the Concept of Function in Mathematical Analysis	468
	Euler's Concept of Function	469
	New Function Concepts Dictated by Physics	470
	Dirichlet's Concept of Function	47 I
	Exit the Generality of Algebra – Enter Rigor	474
	The Dreadful Generality of Functions	4 77
	The Delta "Function"	479
	Generalized Solutions to Differential Equations	481
	Distributions: Functional Analysis Enters	484
25	Statistics and Physical Theories THEODORE M. PORTER	488
	Statistical Thinking	489
	Laws of Error and Variation	491
	Mechanical Law and Human Freedom	494
	Regularity, Average, and Ensemble	498
	Reversibility, Recurrence, and the Direction of Time	500
	Chance at the Fin de Siècle	503
26	Solar Science and Astrophysics	505
	JOANN EISBERG	0
	Solar Physics: Early Phenomenology	508
	Astronomical Spectroscopy	510
	Theoretical Approaches to Solar Modeling: Thermodynamics	612
	and the Nebular Hypothesis	512
	Stellar Spectroscopy	514 516
	From the Old Astronomy to the New	518
	Twentieth-Century Stellar Models	,10
27	Cosmologies and Cosmogonies of Space and Time HELGE KRAGH	522
	The Nineteenth-Century Heritage	522
	Galaxies and Nebulae until 1925	523
	Cosmology Transformed: General Relativity	525
	An Expanding Universe	526
	Nonrelativistic Cosmologies	529
	Gamow's Big Bang	530
	The Steady State Challenge	5 3 I
	Radio Astronomy and Other Observations	532
	A New Cosmological Paradigm	533
	Developments since 1970	534

xiv Contents

28	The Physics and Chemistry of the Earth	538
	NAOMI ORESKES AND RONALD E. DOEL	
	Traditions and Conflict in the Study of the Earth	539
	Geology, Geophysics, and Continental Drift	542
	The Depersonalization of Geology	545
	The Emergence of Modern Earth Science	549
	Epistemic and Institutional Reinforcement	552
	RT VI. PROBLEMS AND PROMISES AT THE END The twentieth century	
29	Science, Technology, and War ALEX ROLAND	561
	Patronage	562
	Institutions	566
	Qualitative Improvements	568
	Large-Scale, Dependable, Standardized Production	569
	Education and Training	570
	Secrecy	571
	Political Coalitions	573
	Opportunity Costs	574
	Dual-Use Technologies	575
	Morality	577
30	Science, Ideology, and the State: Physics in the	
	Twentieth Century	579
	PAUL JOSEPHSON	
	Soviet Marxism and the New Physics	580
	Aryan Physics and Nazi Ideology	586
	Science and Pluralist Ideology: The American Case	589
	The Ideological Significance of Big Science and Technology	592
	The National Laboratory as Locus of Ideology and Knowledge	594
31	Computer Science and the Computer Revolution WILLIAM ASPRAY	598
	Computing before 1945	598
	Designing Computing Systems for the Cold War	601
	Business Strategies and Computer Markets	604
	Computing as a Science and a Profession	607
	Other Aspects of the Computer Revolution	611
32	The Physical Sciences and the Physician's Eye:	
	Dissolving Disciplinary Boundaries	615
	BETTYANN HOLTZMANN KEVLES	01)
	Origins of CT in Academic and Medical Disciplines	617
	Origins of CT in Private Industry	621

Contents	XV
From Nuclear Magnetic Resonance to Magnetic Resonance	
Imaging	625
MRI and the Marketplace	629
The Future of Medical Imaging	631
Global Environmental Change and the History	
of Science	634
JAMES RODGER FLEMING	
Enlightenment	636
Literary and Scientific Transformation: The American Case	638
Scientific Theories of Climatic Change	641
Global Warming: Early Scientific Work and Public Concern	645
Global Cooling, Global Warming	648
Index	651

33

ILLUSTRATIONS

8.1	The Dorpat Refractor, a masterpiece by Fraunhofer	page 157
	The Leviathan of Parsonstown	161
8.3	The Hubble Space Telescope in the payload bay of the	
	Space Shuttle Enterprise	171
10.1	An Aristotelian representation of a cannonball's trajectory	192
10.2	Galileo's 1608 drawing of the parabolic fall of an object	192
10.3	Representations of the atom according to Niels Bohr's 1913	
	atomic theory	198
10.4	The difference between visualization and visualizability	206
	Representations of the Coulomb force	208
10.6	Representations of the atom and its interactions with light	210
	Bubble chamber and "deep structure"	2 I I
	Images of data and their "deep structure"	213
	Representations of the atom	214

..