## **Contents**

## Preface IX

## Personal Foreword XI

| 1     | Introduction: Microwave Synthesis in Perspective 1            |   |
|-------|---------------------------------------------------------------|---|
| 1.1   | Microwave Synthesis and Medicinal Chemistry 1                 |   |
| 1.2   | Microwave-Assisted Organic Synthesis (MAOS) - A Brief History | 2 |
| 1.3   | Scope and Organization of the Book 5                          |   |
| 2     | Microwave Theory 9                                            |   |
| 2.1   | Microwave Radiation 9                                         |   |
| 2.2   | Microwave Dielectric Heating 11                               |   |
| 2.3   | Dielectric Properties 12                                      |   |
| 2.4   | Microwave Versus Conventional Thermal Heating 15              |   |
| 2.5   | Microwave Effects 16                                          |   |
| 2.5.1 | Thermal Effects (Kinetics) 17                                 |   |
| 2.5.2 | Specific Microwave Effects 19                                 |   |
| 2.5.3 | Non-Thermal (Athermal) Microwave Effects 24                   |   |
| 3     | Equipment Review 29                                           |   |
| 3.1   | Introduction 29                                               |   |
| 3.2   | Domestic Microwave Ovens 30                                   |   |
| 3.3   | Dedicated Microwave Reactors for Organic Synthesis 31         |   |
| 3.4   | Multimode Instruments 33                                      |   |
| 3.4.1 | Milestone s.r.l. 34                                           |   |
| 3.4.2 | CEM Corporation 40                                            |   |
| 3.4.3 | Biotage AB 43                                                 |   |
| 3.4.4 | Anton Paar GmbH 44                                            |   |
| 3.5   | Single-Mode Instruments 47                                    |   |
| 3.5.1 | Biotage AB 47                                                 |   |
| 3.5.2 | CEM Corporation 50                                            |   |

Discussion 54

3.6

| 4 | Contents |                                                                  |
|---|----------|------------------------------------------------------------------|
|   | 4        | Microwave Processing Techniques 57                               |
|   | 4.1      | Solvent-Free Reactions 57                                        |
|   | 4.2      | Phase-Transfer Catalysis 60                                      |
|   | 4.3      | Reactions Using Solvents 62                                      |
|   | 4.3.1    | Open- versus Closed-Vessel Conditions 62                         |
|   | 4.3.2    | Pre-Pressurized Reaction Vessels 64                              |
|   | 4.3.3    | Non-Classical Solvents 66                                        |
|   | 4.4      | Parallel Processing 74                                           |
|   | 4.5      | Scale-Up in Batch and Continuous-Flow 82                         |
|   | 5        | Starting with Microwave Chemistry 91                             |
|   | 5.1      | Why Use Microwave Reactors? 91                                   |
|   | 5.2      | Translating Conventionally Heated Methods 92                     |
|   | 5.2.1    | Open or Closed Vessels? 92                                       |
|   | 5.2.2    | Choice of Solvent 93                                             |
|   | 5.2.3    | Temperature and Time 94                                          |
|   | 5.2.4    | Microwave Instrument Software 96                                 |
|   | 5.3      | Reaction Optimization and Library Generation – A Case Study 97   |
|   | 5.3.1    | Choice of Solvent 98                                             |
|   | 5.3.2    | Catalyst Selection 99                                            |
|   | 5.3.3    | Time and Temperature 100                                         |
|   | 5.3.4    | Reinvestigation by a "Design of Experiments" Approach 101        |
|   | 5.3.5    | Optimization for Troublesome Building Block Combinations 101     |
|   | 5.3.6    | Automated Sequential Library Production 102                      |
|   | 5.4      | Limitations and Safety Aspects 103                               |
|   | 6        | Literature Survey Part A: General Organic Synthesis 107          |
|   | 6.1      | Transition Metal-Catalyzed Carbon–Carbon Bond Formations 107     |
|   | 6.1.1    | Heck Reactions 108                                               |
|   | 6.1.2    | Suzuki Reactions 114                                             |
|   | 6.1.3    | Sonogashira Reactions 127                                        |
|   | 6.1.4    | Stille Reactions 132                                             |
|   | 6.1.5    | Negishi, Kumada, and Related Reactions 133                       |
|   | 6.1.6    | Carbonylation Reactions 138                                      |
|   | 6.1.7    | Asymmetric Allylic Alkylations 141                               |
|   | 6.1.8    | Miscellaneous Carbon–Carbon Bond-Forming Reactions 145           |
|   | 6.2      | Transition Metal-Catalyzed Carbon–Heteroatom Bond Formations 148 |
|   | 6.2.1    | Buchwald-Hartwig Reactions 148                                   |
|   | 6.2.2    | Ullmann Condensation Reactions 151                               |
|   | 6.2.3    | Miscellaneous Carbon-Heteroatom Bond-Forming Reactions 153       |
|   | 6.3      | Other Transition Metal-Mediated Processes 155                    |
|   | 6.3.1    | Ring-Closing Metathesis 155                                      |
|   | 6.3.2    | Pauson–Khand Reactions 159                                       |
|   | 6.3.3    | Carbon-Hydrogen Bond Activation 160                              |
|   | 6.3.4    | Miscellaneous Reactions 161                                      |

| 6.4     | Rearrangement Reactions 163                            |
|---------|--------------------------------------------------------|
| 6.4.1   | Claisen Rearrangements 163                             |
| 6.4.2   | Domino/Tandem Claisen Rearrangements 165               |
| 6.4.3   | Squaric Acid-Vinylketene Rearrangements 167            |
| 6.4.4   | Vinylcyclobutane-Cyclohexene Rearrangements 168        |
| 6.4.5   | Miscellaneous Rearrangements 168                       |
| 6.5     | Diels-Alder Cycloaddition Reactions 169                |
| 6.6     | Oxidations 173                                         |
| 6.7     | Catalytic Transfer Hydrogenations 176                  |
| 6.8     | Mitsunobu Reactions 176                                |
| 6.9     | Glycosylation Reactions and Related Carbohydrate-Based |
|         | Transformations 178                                    |
| 6.10    | Multicomponent Reactions 182                           |
| 6.11    | Alkylation Reactions 184                               |
| 6.12    | Nucleophilic Aromatic Substitutions 187                |
| 6.13    | Ring-Opening Reactions 192                             |
| 6.13.1  | Cyclopropane Ring-Openings 192                         |
| 6.13.2  | Aziridine Ring-Openings 193                            |
| 6.13.3  | Epoxide Ring-Openings 193                              |
| 6.14    | Addition and Elimination Reactions 195                 |
| 6.14.1  | Michael Additions 195                                  |
| 6.14.2  | Addition to Alkynes 197                                |
| 6.14.3  | Addition to Alkenes 198                                |
| 6.14.4  | Addition to Nitriles 199                               |
| 6.14.5  | Elimination Reactions 199                              |
| 6.15    | Substitution Reactions 200                             |
| 6.16    | Enamine and Imine Formations 204                       |
| 6.17    | Reductive Aminations 205                               |
| 6.18    | Ester and Amide Formation 208                          |
| 6.19    | Decarboxylation Reactions 211                          |
| 6.20    | Free Radical Reactions 213                             |
| 6.21    | Protection/Deprotection Chemistry 215                  |
| 6.22    | Preparation of Isotopically Labeled Compounds 217      |
| 6.23    | Miscellaneous Transformations 219                      |
| 6.24    | Heterocycle Synthesis 222                              |
| 6.24.1  | Three-Membered Heterocycles with One Heteroatom 222    |
| 6.24.2  | Four-Membered Heterocycles with One Heteroatom 223     |
| 6.24.3  | Five-Membered Heterocycles with One Heteroatom 223     |
| 6.24.4  | Five-Membered Heterocycles with Two Heteroatoms 231    |
| 6.24.5  | Five-Membered Heterocycles with Three Heteroatoms 246  |
| 6.24.6  | Five-Membered Heterocycles with Four Heteroatoms 249   |
| 6.24.7  | Six-Membered Heterocycles with One Heteroatom 250      |
| 6.24.8  | Six-Membered Heterocycles with Two Heteroatoms 261     |
| 6.24.9  | Six-Membered Heterocycles with Three Heteroatoms 272   |
| 6.24.10 | Larger Heterocyclic and Polycyclic Ring Systems 275    |

| Contents |                                                                       |
|----------|-----------------------------------------------------------------------|
| 7        | Literature Survey Part B: Combinatorial Chemistry and High-Throughput |
|          | Organic Synthesis 291                                                 |
|          | Contents<br>7                                                         |

| ,      | Literature Survey Part B: Combinatorial Chemistry and High-I hroughput |
|--------|------------------------------------------------------------------------|
|        | Organic Synthesis 291                                                  |
| 7.1    | Solid-Phase Organic Synthesis 291                                      |
| 7.1.1  | Combinatorial Chemistry and Solid-Phase Organic Synthesis 291          |
| 7.1.2  | Microwave Chemistry and Solid-Phase Organic Synthesis 292              |
| 7.1.3  | Peptide Synthesis and Related Examples 296                             |
| 7.1.4  | Resin Functionalization 301                                            |
| 7.1.5  | Transition Metal Catalysis 305                                         |
| 7.1.6  | Substitution Reactions 311                                             |
| 7.1.7  | Multicomponent Chemistry 320                                           |
| 7.1.8  | Microwave-Assisted Condensation Reactions 322                          |
| 7.1.9  | Rearrangements 324                                                     |
| 7.1.10 | Cleavage Reactions 326                                                 |
| 7.1.11 | Miscellaneous 332                                                      |
| 7.2    | Soluble Polymer-Supported Synthesis 337                                |
| 7.3    | Fluorous Phase Organic Synthesis 348                                   |
| 7.4    | Grafted Ionic Liquid-Phase-Supported Synthesis 356                     |
| 7.5    | Polymer-Supported Reagents 360                                         |
| 7.6    | Polymer-Supported Catalysts 374                                        |
| 7.6.1  | Catalysts on Polymeric Supports 374                                    |
| 7.6.2  | Silica-Grafted Catalysts 378                                           |
| 7.6.3  | Catalysts Immobilized on Glass 379                                     |
| 7.6.4  | Catalysts Immobilized on Carbon 381                                    |

8 Outlook and Conclusions 393

Miscellaneous 382

Polymer-Supported Scavengers 383

Index 397

7.6.5

7.7