Contents

Chapter 1: Introduction to Managerial Decision Modeling — 1		
1.1	What is Decision Modeling? — 2	
1.2	Types of Decision Models —— 3	
	Deterministic Models — 3	
	Probabilistic Models — 4	
	Quantitative versus Qualitative Data 5	
	Using Spreadsheets in Decision Modeling 5	
1.3	Steps Involved in Decision Modeling 6	
	Step 1: Formulation 7	
	Step 2: Solution 9	
	Step 3: Interpretation and Sensitivity Analysis — 10	
1.4	Spreadsheet Example of a Decision Model: Tax Computation 11	
1.5	Spreadsheet Example of a Decision Model: Break-Even Analysis 16	
	Using Goal Seek to Find the Break-Even Point — 18	
1.6	Possible Problems in Developing Decision Models 21	
	Defining the Problem — 21	
	Developing a Model — 22	
	Acquiring Input Data — 22	
	Developing a Solution — 23	
	Testing the Solution — 23	
	Analyzing the Results — 23	
1.7	Implementation—Not Just the Final Step 24	
1.8	Summary 24	
1.9	Exercises 27	
Chapter	r 2: Linear Programming Models: Graphical and Computer Methods —— 33	
2.1	Introduction — 34	
2.2	Developing a Linear Programming Model 35	
	Formulation — 35	
	Solution — 35	
	Interpretation and Sensitivity Analysis — 36	
	Properties of a Linear Programming Model — 36	
	Basic Assumptions of a Linear Programming Model — 37	
2.3	Formulating a Linear Programming Problem — 38	
	Linear Programming Example: Flair Furniture Company — 38	
	Decision Variables 39	
	The Objective Function — 39	
	Constraints 40	
	Nonnegativity Constraints and Integer Values — 41	
	Guidelines for Developing a Correct LP Model — 41	

2.4 Graphical Solution of a Linear Programming Problem with Two Variables — 43 Graphical Representation of Constraints ---- 43 Painting Time Constraint ---- 46 Feasible Region ----- 47 Identifying an Optimal Solution by Using Level Lines — 48 Identifying an Optimal Solution by Using All Corner Points ----- 51 Comments on Flair Furniture's Optimal Solution — 52 Extension to Flair Furniture's LP Model ----- 52 2.5 A Minimization Linear Programming Problem — 54 Holiday Meal Turkey Ranch ----- 55 Graphical Solution of the Holiday Meal Turkey Ranch Problem — 56 2.6 Special Situations in Solving Linear Programming Problems ----- 58 Redundant Constraints ----- 58 Infeasibility ----- 59 Alternate Optimal Solutions ---- 60 Unbounded Solution ---- 61 2.7 Setting Up and Solving Linear Programming Problems Using Excel's Solver ---- 62 Using Solver to Solve the Flair Furniture Problem — 63 The Objective Cell ---- 65 Creating Cells for Constraint RHS Values ---- 67 Entering Information in Solver ---- 68 Using Solver to Solve Flair Furniture Company's Modified Problem ----- 76 Using Solver to Solve the Holiday Meal Turkey Ranch Problem — 77 Algorithmic Solution Procedures for Linear Programming Problems — 79 2.8 2.9 Summary — 80 2.10 Exercises ---- 85 Chapter 3: Linear Programming Modeling Applications with Computer Analyses in Excel ---- 101 3.1 Using Linear Programming to Solve Real-World Problems ---- 102 Manufacturing Applications ---- 103 3.2 Product Mix Problem ----- 103 Make-Buy Decision Problem ---- 108 Marketing Applications ----- 112 3.3 Media Selection Problem — 112 Marketing Research Problem ----- 113 Finance Applications — 118 3.4 Portfolio Selection Problem ----- 118 Alternate Formulations of the Portfolio Selection Problem ----- 121 3.5 Employee Staffing Applications — 123 Labor Planning Problem — 123

	Extensions to the Labor Planning Problem 127 Assignment Problem 127
3.6	Transportation Applications — 127
	Vehicle Loading Problem 127
	Expanded Vehicle Loading Problem—Allocation Problem 132
	Transportation Problem — 133
3.7	Blending Applications — 134
	Diet Problem — 134
	Blending Problem — 136
3.8	Multiperiod Applications — 141
	Production Scheduling Problem — 141
	Sinking Fund Problem — 147
3.9	Summary — 151
3.10	Exercises 153
Chapter	4: Linear Programming Sensitivity Analysis —— 181
4.1	Importance of Sensitivity Analysis — 182
	Why Do We Need Sensitivity Analysis? — 182
4.2	Sensitivity Analysis Using Graphs — 183
	Types of Sensitivity Analysis 185
	Impact of Changes in an Objective Function Coefficient — 185
	Impact of Changes in a Constraint's Right-Hand-Side Value 187
4.3	Sensitivity Analysis Using Solver Reports — 193
	Solver Reports — 194
	Sensitivity Report — 195
	Impact of Changes in a Constraint's RHS Value — 196
	Impact of Changes in an Objective Function Coefficient — 198
4.4	Sensitivity Analysis for a Larger Maximization Example — 200
	Anderson Home Electronics Example — 200
	Some Questions We Want Answered — 203
	Alternate Optimal Solutions 205
4.5	Analyzing Simultaneous Changes by Using the 100% Rule 206
	Simultaneous Changes in Constraint RHS Values 206
	Simultaneous Changes in OFC Values — 207
4.6	Pricing Out New Variables — 207
	Anderson's Proposed New Product — 207
4.7	Sensitivity Analysis for a Minimization Example — 211
	Burn-Off Diet Drink Example — 211
	Burn-Off's Excel Solution — 212
	Answering Sensitivity Analysis Questions for Burn-Off — 213
4.8	Summary 216
4.9	Exercises — 218

Chapter 5: Transportation, Assignment, and Network Models ---- 239

- 5.1 Types of Network Models - 239 Transportation Model — 240 Transshipment Model — 240 Assignment Model — 240 Maximal-Flow Model ---- 241 Shortest-Path Model - 241 Minimal-Spanning Tree Model — 241 Implementation Issues ---- 241 5.2 Characteristics of Network Models ----- 242 Types of Arcs — 242 Types of Nodes ----- 243 Common Characteristics ---- 243 5.3 Transportation Model ---- 244 LP Formulation for Executive Furniture's Transportation Model — 246 Solving the Transportation Model Using Excel — 247 Unbalanced Transportation Models ----- 249 Alternate Optimal Solutions ----- 251 An Application of the Transportation Model: Facility Location ---- 251 5.4 Transportation Models with Max-Min and Min-Max Objectives ----- 252 Transshipment Model ----- 256 5.5 Executive Furniture Company Example—Revisited — 256 LP Formulation for Executive Furniture's Transshipment Model — 256 Lopez Custom Outfits—A Larger Transshipment Example — 258 LP Formulation for Lopez Custom Outfits Transshipment Model — 259 5.6 Assignment Model — 262 Fix-It Shop Example ---- 263 Solving Assignment Models ---- 264 LP Formulation for Fix-It Shop's Assignment Model — 266 5.7 Maximal-Flow Model ----- 268 Road System in Waukesha, Wisconsin ---- 268 LP Formulation for Waukesha Road System's Maximal-Flow Model ---- 269 5.8 Shortest-Path Model ---- 272 Ray Design Inc. Example ---- 273 LP Formulation for Ray Design Inc.'s Shortest-Path Model ---- 274 5.9 Minimal-Spanning Tree Model ---- 276 Lauderdale Construction Company Example — 276 Summary — 279 5.10
- 5.11 Exercises 282

Chapter 6: Integer, Goal, and Nonlinear Programming Models ----- 303

6.1 Models That Relax Linear Programming Conditions — 304

	Integer Programming Models — 304
	Goal Programming Models 305
	Nonlinear Programming Models — 305
6.2	Models with General Integer Variables 305
	Harrison Electric Company —— 306
	Using Solver to Solve Models with General Integer Variables — 309
	Solver Options — 313
	Should We Include Integer Requirements in a Model? 315
6.3	Models with Binary Variables 317
	Portfolio Selection at Simkin and Steinberg — 317
	Set-Covering Problem at Sussex County — 322
6.4	Mixed Integer Models: Fixed-Charge Problems 325
	Locating a New Factory for Hardgrave Machine Company — 326
6.5	Goal Programming Models 331
	Goal Programming Example: Wilson Doors Company 331
	Solving Goal Programming Models with Weighted Goals
	Solving Goal Programming Models with Ranked Goals
	Comparing the Two Approaches for Solving GP Models — 344
6.6	Nonlinear Programming Models — 344
	Why Are NLP Models Difficult to Solve? — 345
	Solving Nonlinear Programming Models Using Solver 347
	Computational Procedures for Nonlinear Programming Problems 354
6.7	Summary 354
6.8	Exercises — 357
Chapter	r 7: Project Management — 383
7.1	Planning, Scheduling, and Controlling Projects 384
	Phases in Project Management — 384
	Use of Software Packages in Project Management 387
7.2	Project Networks
	Identifying Activities — 388
	Identifying Activity Times and Other Resources 389
	Project Management Techniques: PERT and CPM
	Project Management Example: General Foundry, Inc. — 391
	Drawing the Project Network — 392
7.3	Determining the Project Schedule 394
	Forward Pass — 396
	Backward Pass — 398
	Calculating Slack Time and Identifying the Critical Path(s) 399
	Total Slack Time versus Free Slack Time — 401
7.4	Variability in Activity Times 402
	PERT Analysis 403

	Probability of Project Completion — 406
	Determining Project Completion Time for a Given Probability 408
	Variability in Completion Time of Noncritical Paths — 409
7.5	Managing Project Costs and Other Resources — 410
	Planning and Scheduling Project Costs: Budgeting Process 410
	Monitoring and Controlling Project Costs — 413
	Managing Other Resources 415
7.6	Project Crashing 417
	Crashing General Foundry's Project (Hand Calculations) — 418
	Crashing General Foundry's Project Using Linear Programming 421
	Using Linear Programming to Determine Earliest and Latest Starting Times
7.7	Summary — 425
7.8	Exercises —— 429
Chapi	ter 8: Decision Analysis —— 449
8.1	What is Decision Analysis? — 450
8.2	The Five Steps in Decision Analysis — 450

- Thompson Lumber Company Example ----- 451
- 8.3 Types of Decision-Making Environments ----- 453
- 8.4 Decision Making Under Uncertainty 454 Maximax Criterion — 455 Maximin Criterion — 455 Criterion of Realism (Hurwicz) — 456 Equally Likely (Laplace) Criterion — 457 Minimax Regret Criterion — 457
 - Using Excel to Solve Decision-Making Problems under Uncertainty 458
- 8.5 Decision Making Under Risk 461 Expected Monetary Value — 461 Expected Opportunity Loss — 462 Expected Value of Perfect Information — 463 Using Excel to Solve Decision-Making Problems under Risk — 464
- 8.6 Decision Trees 466 Folding Back a Decision Tree — 467
- 8.7 Decision Trees for Multistage Decision-Making Problems 469 A Multistage Decision-Making Problem for Thompson Lumber — 469 Expanded Decision Tree for Thompson Lumber — 470 Folding Back the Expanded Decision Tree for Thompson Lumber — 472 Expected Value of Sample Information — 474
- 8.8 Estimating Probability Values Using Bayesian Analysis 475 Calculating Revised Probabilities — 476 Potential Problems in Using Survey Results — 478
- 8.9 Utility Theory ----- 478

Measuring Utility and Constructing a Utility Curve — 479 Utility as a Decision-Making Criterion — 483

- 8.10 Summary ---- 485
- 8.11 Exercises 488

Chapter 9: Queuing Models — 509

- 9.1 The Importance of Queuing Theory ----- 510 Approaches for Analyzing Queues ----- 510
- 9.2 Queuing System Costs ---- 511
- 9.3 Characteristics of a Queuing System 513 Arrival Characteristics — 513 Queue Characteristics — 516 Service Facility Characteristics — 516 Measuring the Queue's Performance — 519 Kendall's Notation for Queuing Systems — 520 Variety of Queuing Models Studied Here — 520
- 9.4 M/M/1 Queuing System 521

 Assumptions of the M/M/1 Queuing Model 521
 Operating Characteristic Equations for an M/M/1 Queuing System 522
 Arnold's Muffler Shop Example 523
 Using ExcelModules for Queuing Model Computations 524
 Cost Analysis of the Queuing System 527
 Increasing the Service Rate 528
- 9.5 M/M/s Queuing System 529 Operating Characteristic Equations for an M/M/s Queuing System — 530 Arnold's Muffler Shop Revisited — 531 Cost Analysis of the Queuing System — 533
- 9.6 M/D/1 Queuing System 533
 Operating Characteristic Equations for an M/D/1 Queuing System 534
 Garcia-Golding Recycling, Inc. 535
 Cost Analysis of the Queuing System 536
- 9.7 M/G/1 Queuing System 536
 Operating Characteristic Equations for an M/G/1 Queuing System 537
 Meetings with Professor Crino 537
 Using Excel's Goal Seek to Identify Required Model Parameters 539
- 9.8 M/M/S/∞/N Queuing System 540
 Operating Characteristic Equations for the Finite Population Queuing System 542
 Department of Commerce Example 543
 Cost Analysis of the Queuing System 544
- 9.9 More Complex Queuing Systems ----- 546

9.10 Summary ----- 547

Chapter 10: Simulation Modeling ---- 565

Cnapte	r 10: Simulation Modeling — 565
10.1	Why Create a Simulation? —— 566
	Simulation Basics — 566
	Advantages and Disadvantages of Simulation 568
10.2	Monte Carlo Simulation —— 569
	Step 1: Establish a Probability Distribution for Each Variable — 570
	Step 2: Simulate Values from the Probability Distributions — 571
	Step 3: Repeat the Process for a Series of Replications 573
10.3	Role of Computers in Simulation — 574
	Types of Simulation Software Packages — 575
	Random Generation from Some Common Probability Distributions Using
	Excel — 575
10.4	Simulation Model to Compute Expected Profit — 582
	Setting Up the Model 583
	Replication by Copying the Model — 585
	Replication Using Data Table 586
	Analyzing the Results — 587
10.5	Simulation Model of an Inventory Problem 591
	Simkin's Hardware Store —— 591
	Setting Up the Model — 593
	Computation of Costs — 596
	Replication Using Data Table — 596
	Analyzing the Results — 597
	Using Scenario Manager to Include Decisions in a Simulation Model — 598
	Analyzing the Results —— 601
10.6	Simulation Model of a Queuing Problem 601
	Denton Savings Bank — 601
	Setting Up the Model —— 602
	Replication Using Data Table 604
	Analyzing the Results 604
10.7	Simulation Model of a Revenue Management Problem — 605
	Judith's Airport Limousine Service — 605
	Setting Up the Model 606
	Replicating the Model Using Data Table and Scenario Manager — 608
	Analyzing the Results —— 609
10.8	Other Types of Simulation Models — 610
	Operational Gaming — 610
	Systems Simulation — 610
10.9	Summary 611
10.10	
	Exercises — 615

Chapter 11: Forecasting Models ----- 647

11.1 What is Forecasting? ---- 648

- 11.2 Types of Forecasts — 649 Oualitative Models --- 650 Time-Series Models ---- 650 Causal Models ---- 650 Qualitative Forecasting Models ---- 650 11.3 Measuring Forecast Error ---- 651 11.4 11.5 Basic Time-Series Forecasting Models — 652 Components of a Time Series — 653 Stationary and Nonstationary Time-Series Data ---- 654 Moving Averages ---- 654 Using ExcelModules for Forecasting Model Computations ---- 655 Weighted Moving Averages ---- 659 Exponential Smoothing ---- 664 Trend and Seasonality in Time-Series Data ---- 668 11.6 Linear Trend Analysis ---- 668 Scatter Chart — 669 Least-Squares Procedure for Developing a Linear Trend Line — 672 Seasonality Analysis ---- 676 11.7 Decomposition of a Time Series — 678 Multiplicative Decomposition Example: Sawyer Piano House — 678 Using ExcelModules for Multiplicative Decomposition — 679 Causal Forecasting Models: Simple and Multiple Regression — 684 11.8 Causal Simple Regression Model ----- 684 Causal Simple Regression Using ExcelModules — 686 Causal Simple Regression Using Excel's Analysis ToolPak (Data Analysis) ----- 692 Causal Multiple Regression Model ---- 696 Causal Multiple Regression Using ExcelModules — 696 Causal Multiple Regression Using Excel's Analysis ToolPak (Data Analysis) ---- 700 11.9 Summary ---- 705
- 11.10 Exercises ----- 710

Appendix A: Probability Concepts and Applications ---- 731

- A.1 Fundamental Concepts ----- 731
 - Types of Probability ----- 732
- A.2 Mutually Exclusive and Collectively Exhaustive Events 733 Adding Mutually Exclusive Events — 734 Law of Addition for Events that Are Not Mutually Exclusive — 735
- A.3 Statistically Independent Events ----- 736
- A.4 Statistically Dependent Events ---- 737
- A.5 Revising Probabilities with Bayes' Theorem ----- 740 General Form of Bayes' Theorem ----- 741
- A.6 Further Probability Revisions 742

- A.7 Random Variables ----- 743
- A.8 Probability Distributions 745 Probability Distribution of a Discrete Random Variable — 745 Expected Value of a Discrete Probability Distribution — 747 Variance of a Discrete Probability Distribution — 747 Probability Distribution of a Continuous Random Variable — 748
- A.9 The Normal Distribution 750 Area under the Normal Curve — 751 Using the Standard Normal Table — 752 Haynes Construction Company Example — 753
- A.10 The Exponential Distribution 756
- A.11 The Poisson Distribution 757
- A.12 Summary 758
- A.13 Exercises 760

Appendix B: Useful Excel 2016 Commands and Procedures for Installing ExcelModules — 767

- 1B.1 Introduction 767
- B.2 Getting Started 767 Organization of a Worksheet — 768 Navigating through a Worksheet — 769
- B.3 The Ribbon, Toolbars, and Tabs 769 Excel Help — 774
- B.4 Working with Worksheets 775
- B.5 Using Formulas and Functions 775 Copying Formulas — 779 Errors in Using Formulas and Functions — 779
- B.6 Printing Worksheets ---- 780
- B.7 Excel Options and Add-Ins ---- 781
- B.8 ExcelModules 784 Installing ExcelModules — 784 Running ExcelModules — 784 ExcelModules Help and Options — 786

Appendix C: Areas Under The Standard Normal Curve ---- 787

Appendix D: Brief Solutions to All Odd-Numbered End-Of-Chapter Problems — 789

Index ----- 795